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EFFECTS OF ANTIWEAR AND EXTREME-PRESSURE ADDITIVES IN A SYNTHETIC

PARAFFINIC LUBRICANT ON BALL SPINNING TORQUE

by Dennis P. Townsend and Erwin V. Zaretsky

Lewis Research Center

SUMMARY

The NASA spinning torque apparatus was used to conduct tests with SAE 52100 steel
1/2-inch (12. 7-mm) diameter balls spun against nonconforming groove specimens with a

conformity of 55 percent. The lubricant was a synthetic paraffinic oil to which were add-

ed 0. 1, 1. 0, or 10 volume percent of either an antiwear or extreme-pressure (EP) addi-

tive. The additives used were stearic acid, oleic acid, oleyl phosphate, oleyl phosphite,
and zinc dithiophosphate. Test conditions included maximum Hertz stresses of 60 000 to
200 000 psi (41xl07 to 138xl07 N/m2), a spinning speed of 1000 rpm, and room tempera-
ture (no heat added). The spinning torques were measured for each test condition.

Under the test conditions elastohydrodynamic conditions prevailed with no significant
surface interaction. The addition of the antiwear or EP additives in various concentra-
tions to the synthetic paraffinic oil did not change the spinning torques over those ob-
tained with the base fluid. The viscoelastic properties of the fluid were not changed by
the additives tested.

INTRODUCTION

In bearing and gear applications, where thin film or boundary lubrication conditions

may exist, antiwear and extreme-pressure (EP) additives are used in the lubricating
fluid. In many gear applications, the addition of antiwear or EP additives to the lubri-
cant can prevent excessive wear of the gear teeth. In a ball bearing, the ball both spins
and rolls in an angular-contact raceway. Bearing power loss is due to a number of fac-
tors: shearing of the lubricant in the bearing cavity; rubbing of the ball against the cage
pocket, rubbing of the cage against one of the raceways, and spinning of the ball in the
raceway. Antiwear and EP additives should decrease this power loss by reducing fric-
tion in the ball-cage contact and the race-cage contact. In addition, the additives should
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also decrease wear in these sliding contacts. The question remains whether friction is

reduced in the ball-race contact.

The addition to the lubricant of certain reactive materials in a sliding condition

where boundary lubrication exists will decrease the coefficient of friction over that ob-

tained with a nonreactive lubricant. Additives such as stearic acid and oleic acid on

steel form metallic soap films of iron stearate and iron oleate (refs. 1 and 2) that shear

easily and reduce sliding friction (refs. 3 to 5). The phosphate additives such as tri-

cresyi phosphate and oleyl phosphate form surface films of ferric phosphate on the sur-

face of steel, causing a reduction of wear and friction under boundary sliding conditions

(ref. 6).
Under elastohydrodynamic conditions, a rolling element is separated from a mating

surface by a thin lubricant film (ref. 7). This thin film may be the same order of thick-

ness as the boundary film formed by the antiwear or EP additives. Where there is com-

plete separation of the surfaces, antiwear and EP additives should have very little or no

effect on wear but may have some effect on friction due to a change in the lubricant shear

behavior; that is, a change in the lubricant viscoelastic behavior. This viscoelastic

change would cause a change in the EHD film thickness. A decrease in film thickness

should result in an increase in measured torque (ref. 8). Where there is significant as-

perity interaction, an additive of the antiwear or EP type should have some measurable

effect on friction and wear.

Analysis (ref. 9) has indicated that, for a ball spinning in a nonconforming groove

without rolling, an elastohydrodynamic film can be formed. However, it was not deter-

mined whether the film was thick enough to prevent surface interactions. If surface in-

teractions did occur, the values of torque measured should be significantly affected by

the presence of an antiwear or EP additive.

The objective of the research reported herein was to determine the effect of several

lubricant additives of the EP or antiwear types on the spinning torque caused by a ball

spinning without rolling in a nonconforming groove. To accomplish this objective, tests

were conducted in the NASA spinning torque apparatus at room temperature with five

additives of the EP or antiwear type. These additives were stearic acid, oleic acid,

oleyl phosphate, oleyl phosphite, and zinc dithiophosphate. The additives were mixed in

a synthetic paraffinic oil in concentrations of 0. 1, 1. 0, and 10 percent. Test conditions

included a ball-groove (race) conformity of 55 percent, a drive speed of 1000 rpm, maxi- ,-
mum Hertz stresses from 60 000 to 200 000 psi (41xl07 to 138x10 N/m with no heat

added. All experimental results were obtained with lubricant from the same batch and

specimens from the same heat of material.
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Figure 1. Spinning-torque apparatus.

3



1111111111111111111 IIIIIHIIIIIIIII

APPARATUS, SPECIMENS, AND PROCEDURE

Spinning Torque Apparatus

A spinning torque apparatus (see fig. 1) as reported in references 10 and 11 was used

for the tests reported herein. The apparatus essentially consists of a turbine drive, a

pneumatic load device, an upper and lower test specimen, a lower test-housing assembly

incorporating a hydrostatic air-bearing, and a torque-measuring system. In operation,

the upper test specimen is pneumatically loaded against the lower test specimen through

the drive shaft. As the drive shaft is rotated, the upper test specimen spins in the

groove of the lower test specimen. This causes an angular deflection of the lower test-

specimen housing. This angular movement is sensed optically by the torque-measuring

system and is converted into a torque value. During a test, the torque is continuously

recorded on a strip chart.

Specimens

The upper test specimen is a conventional 1/2-inch (12. 7-mm) diameter bearing

ball made of SAE 52100 steel having a nominal Rockwell C hardness of 61 and a surface

r ^G
^-Contact ellipse

^-Flat
Front view Isometric view

CD-9382

Figure 2. Lower test specimen.

finish of 2 microinches (5 p.cm) rms. The lower test specimen (fig. 2) is a 1/2-inch
(12. 7-mm) diameter ball from the same heat of material as the upper test specimen

which is modified by grinding a flat on one side and a cylindrical groove of radius R "
(fig. 2) on the other. The groove simulates the race groove of a bearing. The axis of

the groove is parallel to the flat. The groove radius expressed as a percentage of the

upper-ball diameter is defined as the ball-race conformity. The specimens used in

these tests were ground to ball-race conformities of 55 percent. The surface finish of

the cylindrical groove was approximately 2 to 6 microinches (5 to 15 jucm) rms.
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Lubricant

The lubricant used for the test was a synthetic paraffinic type with a kinematic vis-

cosity of 448 centistokes at 100 F (311 K) and 43 centistokes at 210 F (372 K). The
lubricant was modified for the tests by the addition of 0. 1, 1. 0, or 10 percent of stearic

acid, oleyl phosphate, oleyl phosphite, or zinc dithiophosphate. The stearic acid and
oleic acid form iron stearate and iron oleate, respectively, with steel (refs. 1 and 2)
which reduce boundary friction by reducing the shear strength of the surface layer (refs.
3 to 5). The oleyl phosphate and oleyl phosphite react with iron to form low shear

strength iron phosphate and iron phosphite, respectively. These films also reduce the

shear strength of the surface and thus reduce friction (ref. 6). The zinc dithiophosphate

does not react with iron but forms a low shear strength boundary film on the surface of

the iron thereby reducing friction and wear.

Operating Procedure

Prior to test, the specimens were ultrasonically cleaned in ethyl alcohol and vacuum

dried for 24 hours. During a test, the experimental value of spinning torque was deter-

mined from a strip chart after a steady-state value of angular deflection was reached.

The tests were first run with the nonadditive lubricant. The tests were then consecu-

tively repeated for single additive concentrations of 0. 1, 1. 0, and 10 percent. The

specimens were changed when either the additive concentration or additive type was

changed.

Tests were run at room temperature (i. e. no heat added) with maximum Hertz

stresses ranging from 60 000 to 200 000 psi (41x10 to 138xl07 N/m ). Spinning speed

was 1000 rpm and the contact conformity was 55 percent for all additives used. All ex-

perimental results were obtained with lubricant from the same batch and specimens

from the same heat of material.

RESULTS AND DISCUSSION

Tests were conducted with SAE 52100 steel 1/2-inch (12. 7-mm) diameter balls in

the NASA spinning torque apparatus against lower grooved test specimens with a con-

formity of 55 percent. The resulting torques due to ball spinning were measured. The

results were evaluated with respect to the type and amount of additive and the maximum

Hertz stress.
The results of the tests with the synthetic paraffinic oil without any additives are

shown in figure 3 (a) as a function of stress. These results compare with data obtained
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under similar conditions and reported in references 10 and 11. These data show in-

creasing spinning torque with increasing Hertz stress. The rate and magnitude of this

increase can be predicted based on elastohydrodynamic (EHD) theory (ref. 9).
The theory of reference 9 assumed that a fluid film existed in the center of the con-

tact region. According to conventional EHD theory, a film cannot be formed in the cen-

ter of an elliptical contact where spinning occurs without rolling. However, examination

of the specimens after running showed little or no surface damage and, hence, a lack of

asperity contact. It is speculated that a lubricant film was formed due either to a

"squeeze film" effect or to microasperity elastohydrodynamic lubrication. If the sup-

position of the existence of a film in the center of contact is incorrect, then the torque

characteristics would be different from that of figure 3 (a) because of metal to metal con-

tact. It is also possible that, where an EHD film exists within the entire contact region,

the torque characteristics shown in figure 3(a) for a ball spinning within a nonconforming

groove can be changed. The additives may change the viscoelastic properties of the

lubricant. As a result, the lubricant may become more shear sensitive; that is, the

EHD film thickness would decrease with increasing shear rate. Torque is inversely

proportional to film thickness. Hence, if the additive were to affect the viscoelastic be-

havior of the lubricant, a change in torque from that presented in figure 3(a) could be

expected.
Tests were conducted with the synthetic paraffinic lubricant containing varying per-

centages of stearic acid. The results of these tests are presented in figure 3(b). The

broken line is the curve from figure 3(a) for the synthetic paraffinic oil without the addi-

tive. The results for the stearic acid indicate that there is no effect of the additive on

the resultant torque. This result suggests that there exists a complete elastohydro-

dynamic (EHD) film throughout the contact area and that the lubricant viscoelastic

properties are not affected by the additive.

Test results with the oleic acid additive are shown in figure 3(c). These results are

substantially the same as those for the stearic acid. Again there was no effect of the

additive. This again indicates EHD lubrication with no effect on the viscoelastic behav-

ior of the lubricant.

The results with the oleyl phosphate, oleyl phosphite, and zinc dithiophosphate addi-

tives, which are shown in figures 3(d) to (f), were the same as those for the previous two

additives. No significant change occurred in torque due to the addition or amount of ad-

ditive contained in the synthetic paraffinic oil.

Considerable data exists (refs. 1 to 6, and 12) on sliding friction which show a de-

crease in the friction coefficient for steel on steel with the additives used in this pro-

gram. Because of these data, one might expect the spinning torque to be lower when

evaluating these same additives. The reason that there is no change in the spinning

torque with the addition of the additives can be explained by the supposition that there is

a complete separation of the metal surfaces by the elastohydrodynamic film.
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A typical grooved test specimen that ran with a smooth low torque value did not show
evidence of gross metal to metal contact but had a slightly smoother surface where the
contact ellipse was located. This type of surface and the torque trace indicate, as pre-
viously discussed, the existence of an elastohydrodynamic film over the complete contact
ellipse.

When, because of lubricant side leakage and shearing of the lubricant, the torque
trace became erratic and higher than normal, metal contact had occurred. It was found
that very often the first contact between the spinning ball and the groove occurred at the
edge of the inscribed circle within the contact ellipse (see fig. 4).

The reason the first metal to metal contact occurs more often at the edge of the cir-

cle and not at the center of the contact ellipse or elsewhere can be explained as follows.
Upon loading the ball onto the groove the oil is trapped in the contact zone. The Hertzian

/ / ^Inscribed \ \
cirde \ \

^^T^^T^ ^^^-1-’

Figure 4. Contact ellipse for ball in nonconforming groove (see fig. 2).
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pressure, being higher at the contact center, causes a higher viscosity due to pressure

to exist with a resulting thicker "squeeze film" at the center. Upon rotation, a film is

maintained in the area outside the inscribed circle by hydrodynamic action. The great-

est shear rate occurs in the "squeeze film" in the inscribed circle at the edge of the

circle. As a result, the first film breakthrough occurs at that location.

Since the ball is spinning on a thin EHD film, the spinning torque is dependent on the

rheological properties of the lubricant. Because the spinning torque was unchanged by

the addition of the additives to the lubricant, it can be concluded that the rheological

properties of the lubricant were unchanged by the additives.

SUMMARY OF RESULTS

The NASA spinning torque apparatus was used to conduct tests with SAE 52100 steel

1/2-inch (12. 7-mm) diameter balls spun against nonconforming groove specimens with a

conformity of 55 percent. The lubricant was a synthetic paraffinic oil to which was

added 0. 1, 1. 0, or 10 volume percent an antiwear or extreme pressure (EP) additive.

The additives used were stearic acid, oleic acid, oleyl phosphate, oleyl phosphite, and

zinc dithiophosphate. Test conditions were as follows: a maximum Hertz stress of
7 7 9

60 000 to 200 000 psi (41x10 to 138x10 N/m ); a spinning speed of 1000 rpm; and room

temperature (no heat added). Spinning torques were measured and the following results

were obtained:

1. Under the test conditions, elastohydrodynamic conditions prevailed with no signifi-

cant surface interaction.

2. The addition of the antiwear and EP additives in various concentrations to the

synthetic paraffinic oil did not change the spinning torque over that obtained with the base

fluid.

3. The viscoelastic properties of the base fluid were not changed by the additives

tested.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, March 25, 1970,
126-15.
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